双面胶带
双面胶带
双面胶带
常见气浮除油技术
发布时间:2024-05-16 |   作者: 企鹅电竞网页版入口官网

  气浮法是利用在油—水悬浮液中释放出大量直径为10~120μm的微气泡,借助于表面张力作用,将分散于废水中的微小油滴粘附在微气泡上,使气泡的浮力增大上浮,实现油/水有效分离。一些气浮除油技术在除油的同时,还可除去废水中的悬浮物及部分有机污染物。目前已有的气浮除油技术有多种类型。每类技术也都有其各自不同的特点及适用范围。

  叶轮气浮是利用散气盘在水中非常快速地旋转产生离心效应,形成的负压将空气吸入,继而被散气盘切割成小气泡,并沿径向甩出。进入水中的气泡随之向上运动,利用自身吸附功能,陆续将分散油或悬浮物吸附集聚成较大颗粒,并浮于水体表面而被去除。叶轮气浮机具有吸入气体多、无需溶气、受含油质量浓度影响小、设备紧凑、能耗低、投资少等优点,但其本身为动设备,结构稍显复杂、需定时保养,且对进水水质的适应性稍差,对进水负荷稳定性要求高。其除油效率为75%~85%。

  射流气浮则是利用水从喷嘴高速喷出时,会在喷嘴的吸入室形成负压,气体继而被诱导吸入后,被高速水流剪切成气泡,然后喷射进入水中。射流气浮只需1台泵提供动力,无需采用旋转散气盘,降低了能耗。射流气浮的气泡数量和尺寸受喷嘴结构影响,气泡直径越小,气泡数量越多,除油效果也越好。

  诱导气浮设备结构相对比较简单,成本较低,占地面积小,最早被大范围的应用于含油废水的油/水分离过程中。

  加压溶气气浮是指在专门的溶气罐内,将被处理的废水加压至0.3~0.4MPa,使罐内空气充分溶于水中达到饱和。当溶气水经压力释放阀送入气浮装置中时,由于骤然减压,溶解于水中的空气以微小气泡形式释放开来,然后吸附小油滴或悬浮物并上浮,将其去除。加压溶气压力直接影响气泡的数量、大小以及均匀性,压力越高,气泡的分散度也越高、越均匀。溶气气浮释放的微气泡外层是一层弹性水膜,由水分子在范德华力的作用下有序紧密排列而成,因此空气无法逸出,使气泡具有较强的稳定性。溶气气浮产生的气泡直径为10~100μm,较诱导气浮的气泡直径小,比表面积大,具有更加好的油/水分离能力。

  加压溶气气浮技术按加压方式可分为全加压溶气气浮、部分加压溶气气浮、部分回流加压溶气气浮等类型。该技术的缺点是气浮时间长,能耗较大、占地多,操作复杂,维护和运行成本比较高,但对废水的适应能力强,除油效率可达80%~90%。

  高效旋流气浮一体化技术集旋流离心分离技术和气浮技术结合于一体,因而在一个设备中实现了多级高效的油/水分离过程。工作时,污水沿旋流筒的切向以一定的速度进入,由此产生离心力。由于油、水、悬浮物的密度不同,在离心力的作用下,可先进行某些特定的程度的粗分离。容器中还加入有溶解气,通过气泡与油和悬浮物的粘合,油和悬浮物在气泡的作用下向上运动到容器顶部,并从顶部排污口把浮油和悬浮物一起排出。水向容器下部运动过程中,仍有碰撞聚集气浮发生,到达底部的过程中又进一步强化了废水的油/水分离。

  近几年已发展有多种形式的旋流气浮一体化系统。按结构特征分,旋流气浮装置又有不设内筒、内筒内旋流式、内筒外旋流式三大类型。但无论结构及形式如何变化,其工作原理大体相同,不同之处在于污水的流动循环方式和油脂收集方式。目前市场上的旋流气浮一体机大多数都用在石业,解决能力普遍较小。为适应煤化工行业的需要,尚需开发更为适用的、解决能力较大的此类装置。

  涡凹气浮是目前应用较多的一种投资少、效率高、处理成本低、效果好的污水处理设备,可有效去除废水中的油脂、胶状物及固体悬浮物(SS)。

  涡凹气浮装置一般来说包括曝气机、抽风管、回流管道、刮泥机及气浮槽等部件。经过预处理的污水首先由底部进入涡凹曝气机的充气段,并在上升过程中与曝气机产生的微气泡充分混合。曝气机的工作原理是利用散气叶轮的非常快速地旋转,在水中形成一个真空区,通过抽风管将水面上的空气引入水中并进入真空区,产生微气泡并呈螺旋状上浮,继而陆续吸附油脂及固体悬浮物,并将其带至水面。刮泥机沿着整个液面运行,并将漂浮物从气浮槽的进口端推到出口端的排放管道中。

  位于气浮槽内底部的回流管道,一直从曝气区延伸至气浮段。在产生微气泡的同时,曝气机同时会在池底形成一个负压区,进而会使废水从池底回流至曝气区,然后再返回气浮段。该过程确保了40%左右的污水回流,使得在没有进水的状况下气浮段仍可正常工作。

  溶气泵气浮采用溶气泵提供气泡,工作原理和一般气浮分离系统相同。溶气泵一般会用涡流泵或气—液多相泵,其工作时在泵的入口处空气与水一起进入泵壳内,高速转动的叶轮将吸入的空气切割成小气泡,小气泡在泵内的高压环境下迅速溶解于水中,形成溶气水,然后进入气浮池完成气浮过程。溶气泵产生的气泡直径一般为20~40μm,溶气水中最大含气量可达30%,泵的性能在流量变化和气量波动时十分稳定,为泵的调节和气浮工艺的控制提供了极好的操作条件。

  溶气泵气浮系统的优点是气泡较小,油/水分离效果好,无需压缩气源,设备简单,易于维护,造价也低。克服了传统加压气浮技术存在的释放头易堵塞,水温高时溶气效果差、操作维护复杂和运行的成本高等缺点。

  典型的浅层气浮工艺系统由圆柱形浅水池、旋转单元及溶气水制备单元等部分所组成。旋转单元包括了进水口、布水器、加压水入口、加压水布水器、除油后废水排出管、减速机和螺旋泥斗等部件。通过减速机的驱动,使旋转单元绕其中心以与进水流速一致的速度缓慢转动。

  废水从池中心的旋转接头进入废水布水器排出。加压水由加压水布水器排出。除油后的废水由专用排出管排出,分隔板可将刚布下的废水和经除油后的水完全隔开。经精心设计,可使螺旋泥斗对水体扰动达到最小,并使其优先刮去水池内最先浮起的浮渣。浮渣靠重力作用自行落入到污泥池中。

  浅层气浮分离系统集絮凝、气浮、撇渣、刮泥等功能于一体,其溶气气泡直径也较小,使其对微小悬浮物的吸附效果更好。此外,由于处理池子浅,废水停滞时间短,大幅度的提升了废水分离效率,该技术适合处理大宗废水。

  电化学气浮技术所采用的电极包括了惰性电极和可溶性电极两大类,它是将破乳、絮凝、气浮、沉降分离等功能集于一体的综合处理技术,可有效去除水中的油、COD和悬浮物等。

  电化学装置中,当采用可溶性极板时会电解析出Fe3+或Al3+,并继而生成Fe(OH)3或Al(OH)3等化合物,可破坏乳化油滴稳定的双电层结构,促使油/水进一步分离。其高效电絮凝功能可促使废水中的胶体颗粒及悬浮物等杂质凝聚沉降。电解气浮产生的氢、氧等微小气泡,直径比较小,比表面相对较大,从而有助于吸附水中的悬浮油滴上浮至水面,使油/水得以有效分离。

  电化学气浮技术中的阳极因电解反应会产生活性物质,如羟基自由基和氧自由基等,可氧化分解废水中含有的有机污染物,从而有助于降低废水中COD的含量。

  总体而言,电化学气浮技术综合处理效果好,装置布局较为紧凑,处理效率高,所以更适用于含油质量浓度较高的有机废水。但该技术也存在不少缺点,如电极损耗比较快,能耗高,运行的成本也高等,因而限制了其工业化应用。

  超声波气浮利用专用发生装置产生超声波通入废水中时,会周期性地产生瞬间负压力和瞬间正压力。由于压力波动和突变而在废水中产生的空化泡,其直径只有几个至几十个纳米,且存在时间很短,不断发生爆裂,并使附近小范围区域内的温度和压力急剧升高。在产生负压时,液体中产生真空空穴。溶解于废水中的气体及有机物进入空穴,并由于高温形成气泡。接着在正压力起作用时,瞬间产生强大的压力,气泡被压缩而破裂。另外,超声波在密度不同的异相界面处,会产生显著的反射作用。由于这个反射声压,使废水乳化油界面形成较为强大的冲击力,因此导致乳化液滴界面破裂,实现破乳及油/水分离。超声波震荡产生的热效应、自由基效应(产生极强氧化能力的羟基自由基等)和空化效应(产生局部高温度高压力),可迅速破坏有机污染物的分子结构和化学键,使水中难被生化降解的大分子有机污染物转化为易生化降解的小分子有机污染物,或者完全分解。当超声波通过分布有细小悬浮颗粒和油脂的废水时,其中的颗粒开始与介质一起振动,但由于大小不同的粒子具有不一样的振动频率,颗粒将相互碰撞、聚合,体积和质量不断增大。至某些特定的程度时,已不能随超声波振动,只能作无规则的运动,继续碰撞、聚合、变大,并逐渐上浮,形成浮渣和浮油,从而也达到了脱除油脂和悬浮物的目的。

  综上所述,采用超声波气浮技术进行废水净化处理,不仅除油效果好,而且对废水中的有机污染物也有较好的去除效果。同时,由于可使BOD/COD比提高0.15~0.25,因而还大大改善了废水的可生化性能,有利于后续对废水的进一步处理。因此,超声波技术一般适用于高浓度、难降解有机废水的治理,是一种可同时实现多种污染物脱除的综合治理方法,通常可作为废水生化处理前的预处理手段。

返回列表
常见气浮除油技术
发布时间:2024-05-16

  气浮法是利用在油—水悬浮液中释放出大量直径为10~120μm的微气泡,借助于表面张力作用,将分散于废水中的微小油滴粘附在微气泡上,使气泡的浮力增大上浮,实现油/水有效分离。一些气浮除油技术在除油的同时,还可除去废水中的悬浮物及部分有机污染物。目前已有的气浮除油技术有多种类型。每类技术也都有其各自不同的特点及适用范围。

  叶轮气浮是利用散气盘在水中非常快速地旋转产生离心效应,形成的负压将空气吸入,继而被散气盘切割成小气泡,并沿径向甩出。进入水中的气泡随之向上运动,利用自身吸附功能,陆续将分散油或悬浮物吸附集聚成较大颗粒,并浮于水体表面而被去除。叶轮气浮机具有吸入气体多、无需溶气、受含油质量浓度影响小、设备紧凑、能耗低、投资少等优点,但其本身为动设备,结构稍显复杂、需定时保养,且对进水水质的适应性稍差,对进水负荷稳定性要求高。其除油效率为75%~85%。

  射流气浮则是利用水从喷嘴高速喷出时,会在喷嘴的吸入室形成负压,气体继而被诱导吸入后,被高速水流剪切成气泡,然后喷射进入水中。射流气浮只需1台泵提供动力,无需采用旋转散气盘,降低了能耗。射流气浮的气泡数量和尺寸受喷嘴结构影响,气泡直径越小,气泡数量越多,除油效果也越好。

  诱导气浮设备结构相对比较简单,成本较低,占地面积小,最早被大范围的应用于含油废水的油/水分离过程中。

  加压溶气气浮是指在专门的溶气罐内,将被处理的废水加压至0.3~0.4MPa,使罐内空气充分溶于水中达到饱和。当溶气水经压力释放阀送入气浮装置中时,由于骤然减压,溶解于水中的空气以微小气泡形式释放开来,然后吸附小油滴或悬浮物并上浮,将其去除。加压溶气压力直接影响气泡的数量、大小以及均匀性,压力越高,气泡的分散度也越高、越均匀。溶气气浮释放的微气泡外层是一层弹性水膜,由水分子在范德华力的作用下有序紧密排列而成,因此空气无法逸出,使气泡具有较强的稳定性。溶气气浮产生的气泡直径为10~100μm,较诱导气浮的气泡直径小,比表面积大,具有更加好的油/水分离能力。

  加压溶气气浮技术按加压方式可分为全加压溶气气浮、部分加压溶气气浮、部分回流加压溶气气浮等类型。该技术的缺点是气浮时间长,能耗较大、占地多,操作复杂,维护和运行成本比较高,但对废水的适应能力强,除油效率可达80%~90%。

  高效旋流气浮一体化技术集旋流离心分离技术和气浮技术结合于一体,因而在一个设备中实现了多级高效的油/水分离过程。工作时,污水沿旋流筒的切向以一定的速度进入,由此产生离心力。由于油、水、悬浮物的密度不同,在离心力的作用下,可先进行某些特定的程度的粗分离。容器中还加入有溶解气,通过气泡与油和悬浮物的粘合,油和悬浮物在气泡的作用下向上运动到容器顶部,并从顶部排污口把浮油和悬浮物一起排出。水向容器下部运动过程中,仍有碰撞聚集气浮发生,到达底部的过程中又进一步强化了废水的油/水分离。

  近几年已发展有多种形式的旋流气浮一体化系统。按结构特征分,旋流气浮装置又有不设内筒、内筒内旋流式、内筒外旋流式三大类型。但无论结构及形式如何变化,其工作原理大体相同,不同之处在于污水的流动循环方式和油脂收集方式。目前市场上的旋流气浮一体机大多数都用在石业,解决能力普遍较小。为适应煤化工行业的需要,尚需开发更为适用的、解决能力较大的此类装置。

  涡凹气浮是目前应用较多的一种投资少、效率高、处理成本低、效果好的污水处理设备,可有效去除废水中的油脂、胶状物及固体悬浮物(SS)。

  涡凹气浮装置一般来说包括曝气机、抽风管、回流管道、刮泥机及气浮槽等部件。经过预处理的污水首先由底部进入涡凹曝气机的充气段,并在上升过程中与曝气机产生的微气泡充分混合。曝气机的工作原理是利用散气叶轮的非常快速地旋转,在水中形成一个真空区,通过抽风管将水面上的空气引入水中并进入真空区,产生微气泡并呈螺旋状上浮,继而陆续吸附油脂及固体悬浮物,并将其带至水面。刮泥机沿着整个液面运行,并将漂浮物从气浮槽的进口端推到出口端的排放管道中。

  位于气浮槽内底部的回流管道,一直从曝气区延伸至气浮段。在产生微气泡的同时,曝气机同时会在池底形成一个负压区,进而会使废水从池底回流至曝气区,然后再返回气浮段。该过程确保了40%左右的污水回流,使得在没有进水的状况下气浮段仍可正常工作。

  溶气泵气浮采用溶气泵提供气泡,工作原理和一般气浮分离系统相同。溶气泵一般会用涡流泵或气—液多相泵,其工作时在泵的入口处空气与水一起进入泵壳内,高速转动的叶轮将吸入的空气切割成小气泡,小气泡在泵内的高压环境下迅速溶解于水中,形成溶气水,然后进入气浮池完成气浮过程。溶气泵产生的气泡直径一般为20~40μm,溶气水中最大含气量可达30%,泵的性能在流量变化和气量波动时十分稳定,为泵的调节和气浮工艺的控制提供了极好的操作条件。

  溶气泵气浮系统的优点是气泡较小,油/水分离效果好,无需压缩气源,设备简单,易于维护,造价也低。克服了传统加压气浮技术存在的释放头易堵塞,水温高时溶气效果差、操作维护复杂和运行的成本高等缺点。

  典型的浅层气浮工艺系统由圆柱形浅水池、旋转单元及溶气水制备单元等部分所组成。旋转单元包括了进水口、布水器、加压水入口、加压水布水器、除油后废水排出管、减速机和螺旋泥斗等部件。通过减速机的驱动,使旋转单元绕其中心以与进水流速一致的速度缓慢转动。

  废水从池中心的旋转接头进入废水布水器排出。加压水由加压水布水器排出。除油后的废水由专用排出管排出,分隔板可将刚布下的废水和经除油后的水完全隔开。经精心设计,可使螺旋泥斗对水体扰动达到最小,并使其优先刮去水池内最先浮起的浮渣。浮渣靠重力作用自行落入到污泥池中。

  浅层气浮分离系统集絮凝、气浮、撇渣、刮泥等功能于一体,其溶气气泡直径也较小,使其对微小悬浮物的吸附效果更好。此外,由于处理池子浅,废水停滞时间短,大幅度的提升了废水分离效率,该技术适合处理大宗废水。

  电化学气浮技术所采用的电极包括了惰性电极和可溶性电极两大类,它是将破乳、絮凝、气浮、沉降分离等功能集于一体的综合处理技术,可有效去除水中的油、COD和悬浮物等。

  电化学装置中,当采用可溶性极板时会电解析出Fe3+或Al3+,并继而生成Fe(OH)3或Al(OH)3等化合物,可破坏乳化油滴稳定的双电层结构,促使油/水进一步分离。其高效电絮凝功能可促使废水中的胶体颗粒及悬浮物等杂质凝聚沉降。电解气浮产生的氢、氧等微小气泡,直径比较小,比表面相对较大,从而有助于吸附水中的悬浮油滴上浮至水面,使油/水得以有效分离。

  电化学气浮技术中的阳极因电解反应会产生活性物质,如羟基自由基和氧自由基等,可氧化分解废水中含有的有机污染物,从而有助于降低废水中COD的含量。

  总体而言,电化学气浮技术综合处理效果好,装置布局较为紧凑,处理效率高,所以更适用于含油质量浓度较高的有机废水。但该技术也存在不少缺点,如电极损耗比较快,能耗高,运行的成本也高等,因而限制了其工业化应用。

  超声波气浮利用专用发生装置产生超声波通入废水中时,会周期性地产生瞬间负压力和瞬间正压力。由于压力波动和突变而在废水中产生的空化泡,其直径只有几个至几十个纳米,且存在时间很短,不断发生爆裂,并使附近小范围区域内的温度和压力急剧升高。在产生负压时,液体中产生真空空穴。溶解于废水中的气体及有机物进入空穴,并由于高温形成气泡。接着在正压力起作用时,瞬间产生强大的压力,气泡被压缩而破裂。另外,超声波在密度不同的异相界面处,会产生显著的反射作用。由于这个反射声压,使废水乳化油界面形成较为强大的冲击力,因此导致乳化液滴界面破裂,实现破乳及油/水分离。超声波震荡产生的热效应、自由基效应(产生极强氧化能力的羟基自由基等)和空化效应(产生局部高温度高压力),可迅速破坏有机污染物的分子结构和化学键,使水中难被生化降解的大分子有机污染物转化为易生化降解的小分子有机污染物,或者完全分解。当超声波通过分布有细小悬浮颗粒和油脂的废水时,其中的颗粒开始与介质一起振动,但由于大小不同的粒子具有不一样的振动频率,颗粒将相互碰撞、聚合,体积和质量不断增大。至某些特定的程度时,已不能随超声波振动,只能作无规则的运动,继续碰撞、聚合、变大,并逐渐上浮,形成浮渣和浮油,从而也达到了脱除油脂和悬浮物的目的。

  综上所述,采用超声波气浮技术进行废水净化处理,不仅除油效果好,而且对废水中的有机污染物也有较好的去除效果。同时,由于可使BOD/COD比提高0.15~0.25,因而还大大改善了废水的可生化性能,有利于后续对废水的进一步处理。因此,超声波技术一般适用于高浓度、难降解有机废水的治理,是一种可同时实现多种污染物脱除的综合治理方法,通常可作为废水生化处理前的预处理手段。

...
常见气浮除油技术
发布时间:2024-05-16

  气浮法是利用在油—水悬浮液中释放出大量直径为10~120μm的微气泡,借助于表面张力作用,将分散于废水中的微小油滴粘附在微气泡上,使气泡的浮力增大上浮,实现油/水有效分离。一些气浮除油技术在除油的同时,还可除去废水中的悬浮物及部分有机污染物。目前已有的气浮除油技术有多种类型。每类技术也都有其各自不同的特点及适用范围。

  叶轮气浮是利用散气盘在水中非常快速地旋转产生离心效应,形成的负压将空气吸入,继而被散气盘切割成小气泡,并沿径向甩出。进入水中的气泡随之向上运动,利用自身吸附功能,陆续将分散油或悬浮物吸附集聚成较大颗粒,并浮于水体表面而被去除。叶轮气浮机具有吸入气体多、无需溶气、受含油质量浓度影响小、设备紧凑、能耗低、投资少等优点,但其本身为动设备,结构稍显复杂、需定时保养,且对进水水质的适应性稍差,对进水负荷稳定性要求高。其除油效率为75%~85%。

  射流气浮则是利用水从喷嘴高速喷出时,会在喷嘴的吸入室形成负压,气体继而被诱导吸入后,被高速水流剪切成气泡,然后喷射进入水中。射流气浮只需1台泵提供动力,无需采用旋转散气盘,降低了能耗。射流气浮的气泡数量和尺寸受喷嘴结构影响,气泡直径越小,气泡数量越多,除油效果也越好。

  诱导气浮设备结构相对比较简单,成本较低,占地面积小,最早被大范围的应用于含油废水的油/水分离过程中。

  加压溶气气浮是指在专门的溶气罐内,将被处理的废水加压至0.3~0.4MPa,使罐内空气充分溶于水中达到饱和。当溶气水经压力释放阀送入气浮装置中时,由于骤然减压,溶解于水中的空气以微小气泡形式释放开来,然后吸附小油滴或悬浮物并上浮,将其去除。加压溶气压力直接影响气泡的数量、大小以及均匀性,压力越高,气泡的分散度也越高、越均匀。溶气气浮释放的微气泡外层是一层弹性水膜,由水分子在范德华力的作用下有序紧密排列而成,因此空气无法逸出,使气泡具有较强的稳定性。溶气气浮产生的气泡直径为10~100μm,较诱导气浮的气泡直径小,比表面积大,具有更加好的油/水分离能力。

  加压溶气气浮技术按加压方式可分为全加压溶气气浮、部分加压溶气气浮、部分回流加压溶气气浮等类型。该技术的缺点是气浮时间长,能耗较大、占地多,操作复杂,维护和运行成本比较高,但对废水的适应能力强,除油效率可达80%~90%。

  高效旋流气浮一体化技术集旋流离心分离技术和气浮技术结合于一体,因而在一个设备中实现了多级高效的油/水分离过程。工作时,污水沿旋流筒的切向以一定的速度进入,由此产生离心力。由于油、水、悬浮物的密度不同,在离心力的作用下,可先进行某些特定的程度的粗分离。容器中还加入有溶解气,通过气泡与油和悬浮物的粘合,油和悬浮物在气泡的作用下向上运动到容器顶部,并从顶部排污口把浮油和悬浮物一起排出。水向容器下部运动过程中,仍有碰撞聚集气浮发生,到达底部的过程中又进一步强化了废水的油/水分离。

  近几年已发展有多种形式的旋流气浮一体化系统。按结构特征分,旋流气浮装置又有不设内筒、内筒内旋流式、内筒外旋流式三大类型。但无论结构及形式如何变化,其工作原理大体相同,不同之处在于污水的流动循环方式和油脂收集方式。目前市场上的旋流气浮一体机大多数都用在石业,解决能力普遍较小。为适应煤化工行业的需要,尚需开发更为适用的、解决能力较大的此类装置。

  涡凹气浮是目前应用较多的一种投资少、效率高、处理成本低、效果好的污水处理设备,可有效去除废水中的油脂、胶状物及固体悬浮物(SS)。

  涡凹气浮装置一般来说包括曝气机、抽风管、回流管道、刮泥机及气浮槽等部件。经过预处理的污水首先由底部进入涡凹曝气机的充气段,并在上升过程中与曝气机产生的微气泡充分混合。曝气机的工作原理是利用散气叶轮的非常快速地旋转,在水中形成一个真空区,通过抽风管将水面上的空气引入水中并进入真空区,产生微气泡并呈螺旋状上浮,继而陆续吸附油脂及固体悬浮物,并将其带至水面。刮泥机沿着整个液面运行,并将漂浮物从气浮槽的进口端推到出口端的排放管道中。

  位于气浮槽内底部的回流管道,一直从曝气区延伸至气浮段。在产生微气泡的同时,曝气机同时会在池底形成一个负压区,进而会使废水从池底回流至曝气区,然后再返回气浮段。该过程确保了40%左右的污水回流,使得在没有进水的状况下气浮段仍可正常工作。

  溶气泵气浮采用溶气泵提供气泡,工作原理和一般气浮分离系统相同。溶气泵一般会用涡流泵或气—液多相泵,其工作时在泵的入口处空气与水一起进入泵壳内,高速转动的叶轮将吸入的空气切割成小气泡,小气泡在泵内的高压环境下迅速溶解于水中,形成溶气水,然后进入气浮池完成气浮过程。溶气泵产生的气泡直径一般为20~40μm,溶气水中最大含气量可达30%,泵的性能在流量变化和气量波动时十分稳定,为泵的调节和气浮工艺的控制提供了极好的操作条件。

  溶气泵气浮系统的优点是气泡较小,油/水分离效果好,无需压缩气源,设备简单,易于维护,造价也低。克服了传统加压气浮技术存在的释放头易堵塞,水温高时溶气效果差、操作维护复杂和运行的成本高等缺点。

  典型的浅层气浮工艺系统由圆柱形浅水池、旋转单元及溶气水制备单元等部分所组成。旋转单元包括了进水口、布水器、加压水入口、加压水布水器、除油后废水排出管、减速机和螺旋泥斗等部件。通过减速机的驱动,使旋转单元绕其中心以与进水流速一致的速度缓慢转动。

  废水从池中心的旋转接头进入废水布水器排出。加压水由加压水布水器排出。除油后的废水由专用排出管排出,分隔板可将刚布下的废水和经除油后的水完全隔开。经精心设计,可使螺旋泥斗对水体扰动达到最小,并使其优先刮去水池内最先浮起的浮渣。浮渣靠重力作用自行落入到污泥池中。

  浅层气浮分离系统集絮凝、气浮、撇渣、刮泥等功能于一体,其溶气气泡直径也较小,使其对微小悬浮物的吸附效果更好。此外,由于处理池子浅,废水停滞时间短,大幅度的提升了废水分离效率,该技术适合处理大宗废水。

  电化学气浮技术所采用的电极包括了惰性电极和可溶性电极两大类,它是将破乳、絮凝、气浮、沉降分离等功能集于一体的综合处理技术,可有效去除水中的油、COD和悬浮物等。

  电化学装置中,当采用可溶性极板时会电解析出Fe3+或Al3+,并继而生成Fe(OH)3或Al(OH)3等化合物,可破坏乳化油滴稳定的双电层结构,促使油/水进一步分离。其高效电絮凝功能可促使废水中的胶体颗粒及悬浮物等杂质凝聚沉降。电解气浮产生的氢、氧等微小气泡,直径比较小,比表面相对较大,从而有助于吸附水中的悬浮油滴上浮至水面,使油/水得以有效分离。

  电化学气浮技术中的阳极因电解反应会产生活性物质,如羟基自由基和氧自由基等,可氧化分解废水中含有的有机污染物,从而有助于降低废水中COD的含量。

  总体而言,电化学气浮技术综合处理效果好,装置布局较为紧凑,处理效率高,所以更适用于含油质量浓度较高的有机废水。但该技术也存在不少缺点,如电极损耗比较快,能耗高,运行的成本也高等,因而限制了其工业化应用。

  超声波气浮利用专用发生装置产生超声波通入废水中时,会周期性地产生瞬间负压力和瞬间正压力。由于压力波动和突变而在废水中产生的空化泡,其直径只有几个至几十个纳米,且存在时间很短,不断发生爆裂,并使附近小范围区域内的温度和压力急剧升高。在产生负压时,液体中产生真空空穴。溶解于废水中的气体及有机物进入空穴,并由于高温形成气泡。接着在正压力起作用时,瞬间产生强大的压力,气泡被压缩而破裂。另外,超声波在密度不同的异相界面处,会产生显著的反射作用。由于这个反射声压,使废水乳化油界面形成较为强大的冲击力,因此导致乳化液滴界面破裂,实现破乳及油/水分离。超声波震荡产生的热效应、自由基效应(产生极强氧化能力的羟基自由基等)和空化效应(产生局部高温度高压力),可迅速破坏有机污染物的分子结构和化学键,使水中难被生化降解的大分子有机污染物转化为易生化降解的小分子有机污染物,或者完全分解。当超声波通过分布有细小悬浮颗粒和油脂的废水时,其中的颗粒开始与介质一起振动,但由于大小不同的粒子具有不一样的振动频率,颗粒将相互碰撞、聚合,体积和质量不断增大。至某些特定的程度时,已不能随超声波振动,只能作无规则的运动,继续碰撞、聚合、变大,并逐渐上浮,形成浮渣和浮油,从而也达到了脱除油脂和悬浮物的目的。

  综上所述,采用超声波气浮技术进行废水净化处理,不仅除油效果好,而且对废水中的有机污染物也有较好的去除效果。同时,由于可使BOD/COD比提高0.15~0.25,因而还大大改善了废水的可生化性能,有利于后续对废水的进一步处理。因此,超声波技术一般适用于高浓度、难降解有机废水的治理,是一种可同时实现多种污染物脱除的综合治理方法,通常可作为废水生化处理前的预处理手段。

...